

CINEMATIQUE DU POINT

<u>Plan</u> (Cliquer sur le titre pour accéder au paragraphe)

Ι.	Vecteur vitesse.
П.	Vecteur accélération
Ш.	Exemples de mouvements.
IV.	Changement de référentiel

L'objet de la cinématique est l'étude du mouvement, indépendamment des causes (les forces). On se place évidemment en mécanique newtonienne.

Le mouvement est <u>relatif</u> au référentiel d'étude : on définit un référentiel (R) comme l'association d'un repère d'espace (muni d'une BOND) et d'un repère de temps (horloge). Par abus de langage, on confond souvent référentiel et repère d'espace.

I. Vecteur vitesse.

I.1. Définition.

On définit le vecteur vitesse d'un point M par rapport à un référentiel d'étude :

$$\vec{V}$$
 (M/R) = $\left(\frac{\vec{dOM}}{dt}\right)_{R}$

<u>Rem.</u>: s'il n'y a pas d'ambiguïté, on notera simplement : $\overrightarrow{V} = \frac{\overrightarrow{dOM}}{\overrightarrow{dt}} = \frac{\overrightarrow{o}}{\overrightarrow{r}}$

 $\begin{cases} \parallel \vec{V} \parallel \text{ s'exprime en ms}^{\text{-1}} \\ \vec{V} \text{ est tangent à la trajectoire, orienté dans le sens du mouvement} \end{cases}$

1.2. Expression dans les divers systèmes de coordonnées.

• <u>Cartésiennes</u> : $\overrightarrow{dOM} = \overrightarrow{dxx} + \overrightarrow{dyy} + \overrightarrow{dzz}$

$$\Rightarrow \qquad \overrightarrow{V} \qquad \begin{vmatrix} \overrightarrow{x} = V_x \\ \overrightarrow{y} = V_y \\ \overrightarrow{z} = V_z \end{vmatrix}$$

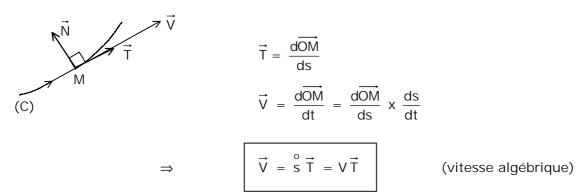
• <u>Cylindriques</u>: $\overrightarrow{dOM} = \overrightarrow{dr} \overrightarrow{e_r} + rd\theta \overrightarrow{e_\theta} + dz \overrightarrow{e_z}$

$$\Rightarrow \qquad \overrightarrow{V} \qquad \qquad \stackrel{\circ}{\underset{r \theta}{|}} = V_{r} \\ (\overrightarrow{e_{r}}, \overrightarrow{e_{\theta}}, \overrightarrow{e_{z}}) \qquad \stackrel{\circ}{\underset{z = V_{z}}{|}} = V_{z}$$

• Sphériques : $d\overrightarrow{OM} = dr\overrightarrow{u_r} + rd\theta\overrightarrow{u_\theta} + rsin\theta d\varphi \overrightarrow{u_\phi}$

$$\Rightarrow \qquad \overrightarrow{V} \qquad \qquad \stackrel{\circ}{r} = V_{r} \\ \stackrel{\circ}{r\theta} = V_{\theta} \\ (\overrightarrow{u_{r}}, \overrightarrow{u_{\theta}}, \overrightarrow{u_{\phi}}) \qquad \qquad \stackrel{\circ}{r\sin\theta} = V_{\phi}$$

• <u>Trièdre de Frenet</u> :



II. Vecteur accélération.

II.1. Définition.

$$\vec{a}$$
 (M/R) = $\left(\frac{\vec{d} \vec{V} (M/R)}{dt}\right)_{R} = \left(\frac{\vec{d}^2 \vec{OM}}{dt^2}\right)_{R}$

(en l'absence d'ambiguïté : $\vec{a} = \vec{V} = \vec{r}$)

 $\begin{cases} \left\| \vec{a} \right\| \text{s'exprime en ms}^{-2} \\ \vec{a} \text{ est dirigée vers l'intérieur de la concavité de la trajectoire (cf ii))} \end{cases}$

Page 2 François MORAND © EduKlub S.A.

Tous droits de l'auteur des œuvres réservés. Sauf autorisation, la reproduction ainsi que toute utilisation des œuvre

11.2. Expression dans les divers systèmes de coordonnées.

Cartésiennes

$$\vec{V} = \vec{x}(t) \vec{x} + \vec{y}(t) \vec{y} + \vec{z}(t) \vec{z}$$

$$\Rightarrow \vec{a} \begin{vmatrix} oo \\ x \\ oo \\ y \\ (\vec{x}, \vec{y}, \vec{z}) \end{vmatrix} = \vec{z}$$

• Cylindriques

$$\vec{V} = \vec{r}(t) \vec{e_r}(t) + r(t) \vec{\theta}(t) \vec{e_\theta}(t) + \vec{z}(t) \vec{e_z}$$

$$\Rightarrow \vec{a} = [\vec{r} \vec{e_r} + \vec{r} \vec{e_r}] + [\vec{r} \vec{\theta} \vec{e_\theta} + \vec{r} \vec{\theta} \vec{e_\theta} + \vec{r} \vec{\theta} \vec{e_\theta}] + \vec{z} \vec{e_z}$$

$$\text{Or}: \quad \begin{cases} \stackrel{\circ}{e_r} = \stackrel{\circ}{\theta} \stackrel{\circ}{e_{\theta}} & \text{donc}: \\ \stackrel{\circ}{e_{\theta}} = - \stackrel{\circ}{\theta} \stackrel{\rightarrow}{e_r} \end{cases}$$

$$\vec{a} \qquad \begin{vmatrix} oo & o^2 \\ r - r\theta = a_r \\ oo & oo \\ 2r\theta + r\theta = a_\theta \end{vmatrix}$$

$$(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z}) \qquad \overrightarrow{z} = a_z$$

Rem.

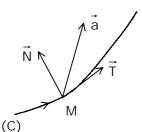
$$a_r = \overset{\circ}{V}_r$$
 et $a_{\theta} = \overset{\circ}{V}_{\theta}$.

Il faut dériver aussi les vecteurs !.. (donc attention)

On peut remarquer que :

$$a_{\theta} = \frac{1}{r} \frac{d}{dt} (r^2 \stackrel{\circ}{\theta})$$
 (nous utiliserons plus tard ce résultat).

Trièdre de Frenet:



$$\vec{V} = \overset{o}{S}_{(t)} \vec{T} (t)$$

$$\vec{a} = \frac{d\vec{V}}{dt} = \overset{oo}{S} \vec{T} + \overset{o}{S} \vec{T}$$

Or:
$$\vec{T} = \frac{d\vec{T}}{dt} = \frac{d\vec{T}}{ds} \times \frac{ds}{dt}$$

$$\frac{d\vec{T}}{ds} = \frac{1}{R} \vec{N} :$$

$$\frac{\circ}{T} = \frac{\circ}{R} \vec{N}$$

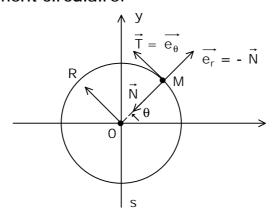
Donc:

 $(a_T \text{ accélération tangentielle}, a_N > 0$

accélération normale)

Exemples de mouvements.

III.1. Mouvement circulaire.



On pose:

$$\begin{cases} s = \widehat{AM} = R\theta \\ \omega(t) = \theta(t) \end{cases}$$

On remarque que :

$$\begin{cases} \vec{N} = -\vec{e_r} \\ \vec{T} = \vec{e_s} \end{cases}$$

(attention, cette propriété n'est valable que pour

le cercle).

Alors:

$$\left\{ \begin{array}{l} \vec{V} = \overset{o}{s} \, \vec{T} = \overset{o}{R} \overset{o}{\theta} \, \vec{T} = \overset{o}{R} \overset{o}{\theta} \, \overset{\rightarrow}{e_{\theta}} \\ \\ \vec{a} = - \overset{o^{2}}{R} \overset{\rightarrow}{\theta} \, \overset{\rightarrow}{e_{r}} + \overset{oo}{R} \overset{\rightarrow}{\theta} \, \overset{\rightarrow}{e_{\theta}} = \overset{o^{2}}{R} \overset{\rightarrow}{\theta} \, \vec{N} + \overset{oo}{R} \overset{\rightarrow}{\theta} \, \vec{T} \end{array} \right.$$

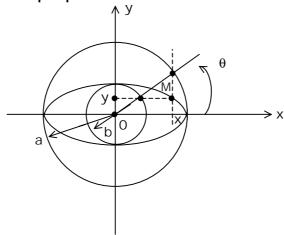
On retrouve donc, en utilisant soit la base (\vec{T},\vec{N}) , soit la base $(\overrightarrow{e_r},\overrightarrow{e_\theta})$, que :

$$\begin{cases} V = R \overset{\circ}{\theta} = \overset{\circ}{S} \\ a_N = R \overset{\circ}{\theta} = R \omega^2 = \frac{V^2}{R} \\ a_T = R \overset{\circ}{\theta} = R \omega = \overset{\circ}{S} \end{cases}$$

Pour un mouvement circulaire uniforme (MCU) :

$$\stackrel{o}{\omega}$$
 = 0 : ω = ω_0 = cste

111.2. Mouvement elliptique.



L'équation cartésienne de l'ellipse de centre 0 est :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Ou encore :

$$\begin{cases} x = a \cos \theta \\ y = b \sin \theta \end{cases}$$

Si $\theta(t)$, calculons $\stackrel{\rightarrow}{V}$ et $\stackrel{\rightarrow}{a}$ dans la base de coordonnées cartésiennes :

$$\begin{vmatrix} \overrightarrow{V} & \overrightarrow{x} = -a & \theta \sin \theta \\ o & y = b & \theta \cos \theta \end{vmatrix}$$

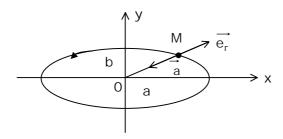
Cherchons à quelle condition : $\vec{a} \wedge \vec{OM} = \vec{O}$ (mouvement à « accélération centrale », cf iii)).

$$\vec{a} \wedge \overrightarrow{OM} = ab \begin{vmatrix} \cos \theta & \cos \theta & \cos \theta \\ -\theta & \sin \theta - \theta & \cos \theta \\ \cos \theta & -\theta & \sin \theta \end{vmatrix} \wedge \begin{vmatrix} \cos \theta & \sin \theta \\ \cos \theta & \cos \theta \end{vmatrix}$$

$$= ab \stackrel{00}{\theta} \stackrel{\rightarrow}{z} = \stackrel{\rightarrow}{O} \Leftrightarrow \stackrel{00}{\theta} = 0$$

Soit:
$$\overset{\circ}{\theta} = \omega = \text{cste} \quad \text{et} \quad \theta = \omega t \quad (\text{si } \theta(o) = 0)$$

Alors : $\vec{a} = -\omega^2 \ \vec{OM}$ (accélération « centripète », proportionnelle à la distance)



III.3. Mouvements à accélération centrale.

• $\underline{\text{Déf.}}$: $\exists O \text{ fixe tel que } \overrightarrow{a} \land \overrightarrow{OM} = \overrightarrow{O}$

<u>Rem.</u>: on exclut le cas trivial $\overrightarrow{V} \wedge \overrightarrow{OM} = \overrightarrow{O}$ et $\overrightarrow{a} \wedge \overrightarrow{OM} = \overrightarrow{O}$ qui correspond aux mouvements rectilignes.

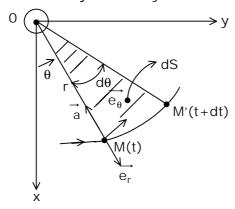
Propriétés

Le mouvement est <u>plan</u>

Soit en effet $\vec{A} = \overrightarrow{OM} \wedge \vec{V}$:

$$\frac{d\overrightarrow{A}}{dt} = \frac{d\overrightarrow{OM}}{dt} \wedge \overrightarrow{V} + \overrightarrow{OM} \wedge \overrightarrow{a} = \overrightarrow{O}$$

Donc $\vec{A} = \text{cste}$, or \vec{A} est perpendiculaire au « plan instantané » de la trajectoire, donc ce plan ne varie pas au cours du temps.



On a vu que : $a_{\theta} = \frac{1}{r} \frac{d}{dt} (r^2 \theta^0)$

Or ici : $a_\theta = 0$

 $\Rightarrow \qquad r^2 \stackrel{\circ}{\theta} = C \qquad \text{(constante)}$

La constante C est appelée constante des aires (C en m²s-¹).

Soit alors dS l'aire « balayée par le rayon vecteur $\overrightarrow{\mathsf{OM}}$ » pendant dt :

$$dS = \frac{1}{2} r^2 d\theta$$
 (secteur circulaire)

La loi des aires dit que <u>l'aire balayée</u> (par le rayon vecteur) <u>par unité de temps est constante</u>. (Cette loi constituera, pour les Planètes du Système Solaire, la 2^e loi de Képler).

<u>Rem.</u>: en cartésiennes, on peut montrer que $C = xy^{\circ} - yx^{\circ}$

Formules de Binet : ce sont deux formules qui donnent V et a_r , indépendamment du temps ; elles sont utiles si on connaît (ou si on cherche) l'équation polaire $r(\theta)$ de la trajectoire.

$$\begin{cases} V^2 = C^2 \left[u^2 + \left(\frac{du}{d\theta} \right)^2 \right] & (1) \\ a_r = -C^2 u^2 \left[u + \frac{d^2 u}{d\theta^2} \right] & (2) \end{cases}$$

Démonstration

(1)
$$V^{2} = r^{0^{2}} + r^{2} \frac{\theta^{2}}{\theta^{2}}$$

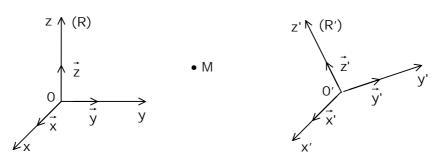
$$\begin{cases} r^{0} = \frac{dr}{dt} = \frac{dr}{d\theta} = \frac{C}{r^{2}} \frac{dr}{d\theta} = -C \frac{du}{d\theta} \\ r^{2} \frac{\theta^{2}}{\theta^{2}} = \frac{C^{2}}{r^{2}} = C^{2} u^{2} \end{cases}$$

(2)
$$a_r = \overset{oo}{r} - r \overset{o^2}{\theta}$$

$$\begin{cases}
\overset{oo}{r} = \frac{d}{dt} \overset{o}{r} = \frac{d}{dt} \left(-C \frac{du}{d\theta} \right) = -C \frac{d^2u}{d\theta^2} \frac{d\theta}{dt} = -C^2u^2 \frac{d^2u}{d\theta^2} \\
r \overset{o^2}{\theta} = \frac{C^2}{r^3} = C^2u^3
\end{cases}$$

IV. Changement de référentiel.

IV.1. Vecteur $\overrightarrow{\Omega}_{e} = \overrightarrow{\Omega} (R'/R)$



Soient deux référentiels

Ils sont en mouvement l'un par rapport à l'autre.

de On peut caractériser mouvement (R')rapport (R), appelé par mouvement « d'entrainement » par :

François MORAND © EduKlub S.A.

- Le mouvement de 0' ↔ V (0'/R)
- La rotation autour de O', caractérisée par le vecteur vitesse de rotation instantané de (R')/(R) noté $\overrightarrow{\Omega}$ (R'/R) ou $\overrightarrow{\Omega}_{\rm e}$.

Le vecteur $\overrightarrow{\Omega_{e}}$ étant défini par :

$$\left\{ \begin{array}{l} \left(\frac{\overrightarrow{dx'}}{dt} \right)_{\!R} = \overrightarrow{\Omega_e} \wedge \overrightarrow{x'} \\ \\ \left(\frac{\overrightarrow{dy'}}{dt} \right)_{\!R} = \overrightarrow{\Omega_e} \wedge \overrightarrow{y'} \\ \\ \left(\frac{\overrightarrow{dz'}}{dt} \right)_{\!R} = \overrightarrow{\Omega_e} \wedge \overrightarrow{z'} \end{array} \right.$$

IV.2. Règle de « dérivation dans le repère mobile » :

Soit un vecteur quelconque \vec{A} exprimé dans la base « mobile » $(\vec{x}', \vec{y}', \vec{z}')$:

$$\overrightarrow{A} \ = \ A_{x'} \, \overrightarrow{x'} \ + \ A_{y'} \, \overrightarrow{y'} \ + \ A_{z'} \, \overrightarrow{z'}$$

Si on dérive \vec{A} dans (R), on doit dériver les composantes et les vecteurs :

$$\left(\frac{d\vec{A}}{dt}\right)_{R} = \left(\stackrel{\circ}{A}_{x'}\vec{x'} + \stackrel{\circ}{A}_{y'}\vec{y'} + \stackrel{\circ}{A}_{z'}\vec{z'}\right) \\
\left(\frac{d\vec{A}}{dt}\right)_{R'} \\
+ \left(\stackrel{\circ}{A}_{x'}\vec{x'} + \stackrel{\circ}{A}_{y'}\vec{y'} + \stackrel{\circ}{A}_{z'}\vec{z'}\right) \\
\overrightarrow{\Omega}_{e} \wedge \stackrel{\circ}{A} \text{ par definition de } \overrightarrow{\Omega}_{e}$$

Ainsi:

$$\left(\frac{d\vec{A}}{dt}\right)_{\!\!R} = \left(\frac{d\vec{A}}{dt}\right)_{\!\!R'} + \stackrel{\scriptstyle \rightarrow}{\Omega} (R'/R) \wedge \stackrel{\scriptstyle \rightarrow}{A}$$

IV.3. Composition des vitesses.

Soit alors M en mouvement par rapport à (R) (mouvement « absolu ») et donc par rapport à (R') (mouvement « relatif »)

$$\vec{V} \left(M/R \right) = \left(\frac{d \overrightarrow{OM}}{dt} \right)_{R} = \left(\frac{d \overrightarrow{OO'}}{dt} \right)_{R} + \left(\frac{d \overrightarrow{O'M}}{dt} \right)_{R}$$

$$\left(\frac{d \overrightarrow{O'M}}{dt} \right)_{R'} + \overrightarrow{\Omega_{e}} \wedge \overrightarrow{O'M}$$

$$\begin{cases} \overrightarrow{V'} = \left(\frac{d\overrightarrow{O'M}}{dt} \right)_{R'} & \text{vitesse relative} \\ \overrightarrow{V_e} = \overrightarrow{V} \left(\overrightarrow{O'} \right) + \overrightarrow{\Omega_e} \wedge \overrightarrow{O'M} & \text{vitesse d'entraînement} \end{cases}$$

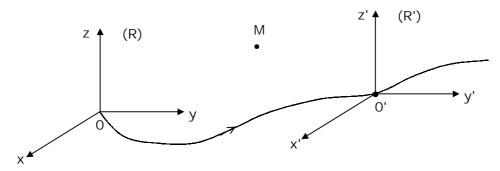
Alors:

$$\vec{V} = \vec{V}' + \vec{V}_e$$

Cas particuliers:

• (R') en translation par rapport à (R) :

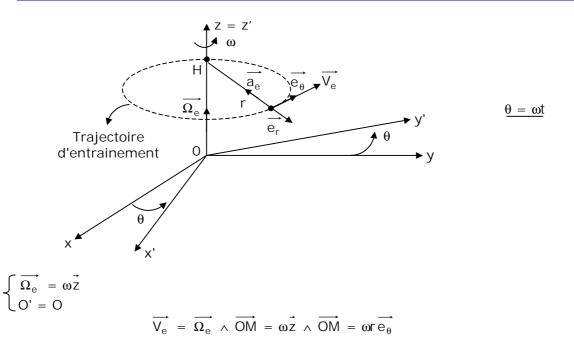
$$\overrightarrow{\Omega}_{e} = \overrightarrow{O}$$



Alors:

$$\overrightarrow{V}_{e} = \overrightarrow{V}(O')$$
, et:

• (R') en rotation uniforme autour de 0z :



(Le mouvement d'entraînement est circulaire uniforme de rayon r)

IV.4. Composition des accélérations :

$$\vec{a} (M/R) = \left(\frac{d\vec{V}}{dt} \right)_{R} = \vec{a} (O') + \left(\frac{d\vec{V'}}{dt} \right)_{R} + \frac{d\vec{\Omega_{e}}}{dt} \wedge \vec{O'M} + \vec{\Omega_{e}} \wedge \left(\frac{d\vec{O'M}}{dt} \right)_{R}$$

$$\begin{cases} \left(\frac{d\overrightarrow{V'}}{dt} \right)_{\!\!R} = \left(\frac{d\overrightarrow{V'}}{dt} \right)_{\!\!R'} + \overrightarrow{\Omega_e} \wedge \overrightarrow{V'} = \overrightarrow{a'} + \overrightarrow{\Omega_e} \wedge \overrightarrow{V'} \\ \left(\frac{d\overrightarrow{O'M}}{dt} \right)_{\!\!R} = \left(\frac{d\overrightarrow{O'M}}{dt} \right)_{\!\!R'} + \overrightarrow{\Omega_e} \wedge \overrightarrow{O'M} = \overrightarrow{V'} + \overrightarrow{\Omega_e} \wedge \overrightarrow{O'M} \end{cases}$$

Posons alors:

La loi de composition des accélérations s'écrit :

$$\overrightarrow{a} = \overrightarrow{a}' + \overrightarrow{a}_e + \overrightarrow{a}_c$$

Cas particuliers:

• (R') en translation par rapport à (R)

$$\begin{cases} \overrightarrow{a_e} &= \overrightarrow{a}(O') \\ \overrightarrow{a_c} &= \overrightarrow{O} \end{cases}$$

$$\Rightarrow \overline{a} = \overline{a'} + \overline{a} (0')$$

• (R') en rotation uniforme autour de Oz :

$$\begin{cases} \frac{d\overrightarrow{\Omega_{e}}}{dt} = \overrightarrow{O} \\ \overrightarrow{\Omega_{e}} \wedge (\overrightarrow{\Omega_{e}} \wedge \overrightarrow{OM}) = \overrightarrow{\omega z} \wedge (\underbrace{\overrightarrow{\omega z} \wedge \overrightarrow{OM}}) = - \overrightarrow{\omega^{2} r} \overrightarrow{e_{r}} \end{cases}$$

$$\overrightarrow{a}_{e} = -\omega^{2} \overrightarrow{r} \overrightarrow{e}_{r} = -\omega^{2} \overrightarrow{HM}$$

(accélération <u>centripète</u> ≡ celle du mouvement d'entrainement, MCU)

<u>Rem.</u>: en mécanique <u>classique</u>, le temps est absolu : $\underline{t'} = \underline{t}$ (ce qui ne sera pas le cas en mécanique relativiste...)