ملخص للاشتقاق

<u>1- الاشتقاق في نقطة </u>

 x_0 مرکزه محرفة في مجال مفتوح مرکزه f دالة عددية معرفة في

نقول إن الدالة f قابلة للاشتقاق في x_0 اذا كانت للدالة للاالدالة $x o \frac{f(x) - f(x_0)}{x - x_0}$ نهاية t ونرمز لها

 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ بـ $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ بـ $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

 $f(x) = x^2 + 2x$ ب) مثال: نعتبر

بين أن f قابلة للاشتقاق في 1 و حدد العدد المشتق في 1

ج) <u>الدالة التألفية المماسة لدالة</u> x_0 قابلة للاشتقاق في f

$$\lim_{x \to x_0} \varepsilon(x) = 0$$
 ، $\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0)$ نضع $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ لدينا

$$\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \Leftrightarrow f(x) = f'(x_0)(x - x_0) + f(x_0) + (x - x_0)\varepsilon(x) \qquad / \lim_{x \to x_0} \varepsilon(x) = 0$$

 $f(x) \simeq f'(x_0)(x-x_0) + f(x_0)$ أي أنه بجوار x_0 لدينا

 x_0 الدالة f في النقطة $x o f'(x_0)(x-x_0) + f(x_0)$ الدالة التألفية المماسة لدالة

 x_0 لتكن f دالة عددية معرفة في مجال مفتوح مركزه

إذا كانت الدالة f قابلة للاشتقاق في x_0 فان الدالة التألفية المماسة لدالة f في النقطة x_0 هي الدالة $g: x \to f'(x_0)(x-x_0) + f(x_0)$

$$f(x) = \sqrt{x}$$
 نعتبر نعتبر

- 1) حدد الدالة التألفية المماسـة لدالة f في النقطة 1
 - $\sqrt{1,001}$ و $\sqrt{0,99}$ و كل من $\sqrt{0,99}$ و 2

<u>2 – الاشتقاق على اليمين - الاشتقاق على اليسار</u>

lphaا حيث $x_0; x_0 + lpha$ دالة معرفة على مجال من شكل $x_0; x_0 + lpha$

نقول إن f قابلة للاشتقاق على اليمين في x إذا كانت للدالة $\frac{f(x)-f(x_0)}{x-x_0}$ نهاية l على اليمين في . $f_d(x_0)$ و نرمز لها بـ x_0

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
 نكتب x_0 نكتب على اليمين في x_0 على اليمين في العدد x_0

lphaن مين $[x_0-lpha;x_0]$ حيث على مجال من شكل x_0-lpha دالة معرفة على مجال من نقول إن f قابلة للاشتقاق على اليسار في x_0 إذا كانت للدال $\frac{f(x)-f(x_0)}{x-x_0}$ نهاية lعلى اليسار في . $f_{\sigma}^{'}(x_0)$ نرمز لها ب x_0

 $f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ العدد x_0 نكتب على اليسار في x_0 على اليسار في العدد المشتق ل

ں – خاصیة

 x_0 تكون f قابلة للاشتقاق في x_0 إذا وفقط إذا كانت f قابلة للاشتقاق على اليمين وعلى اليسار في والعدد المشتق على اليمين يساوي العدد المشتق على اليسار.

$$f$$
 أدرس قابلية اشتقاق f في

$$f(x) = x^2 + |x|$$
 تمرین نعتبر

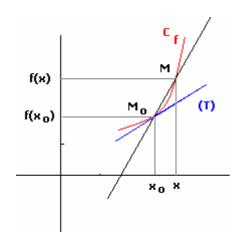
<u>3- الاشتقاق و الاتصال</u>

<u>خاصىة</u>

 $x_{\scriptscriptstyle 0}$ كل دالة قابلة للاشتقاق في $x_{\scriptscriptstyle 0}$ تكون متصلة في

ملاحظة: عكس هذه الخاصية غير صحيح

(كما يوضح المثال السابق الدالة f متصلة في 0 و مع ذلك غير قابلة للاشتقاق في 0 f



4- التأويل الهندسي – معادلة المماس لمنحنى دالة أ- المماس

لتكن f قابلة للاشتقاق في x_0 و $M_0(x,f(x))$ نعتبر في من $M_0\left(x,f(x)
ight)$ لنظتين من

 $\frac{f(x)-f(x_0)}{x-x_0}$ المعامل الموجه للمستقيم $\left(MM_0\right)$ هو

 $f'(x_0)$ نلاحظ عندما تقترب M من M_0 (أي x تؤول إلى x_0 فان x_0 فان x_0 تؤول إلى x_0

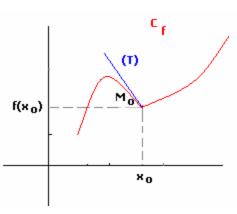
f' (x_0) و بالتالى المستقيم و (MM_0) يدور حول M_0 إلى أن ينطبق مع المستقيم و (MM_0) ذا المعامل الموجه (T) مماس للمنحنى (T)

لتكن f دالة معرفة على مجال مفتوح مركزه x_0 و رمنحناها

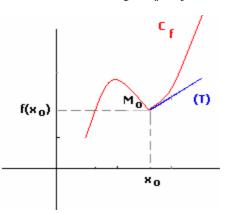
قابلية اشتقاق f في x_0 تؤول هندسيا بوجود مماس لـ c_f عند النقطة ذات الأفصول $y=f'(x_0)(x-x_0)+f(x_0)$

$$f(x) = x^3$$
 تمرین: نعتبر

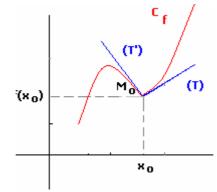
أدرس قابليه الشتقاق f في 2 و حدد معادلة المماس للمنحنى عند النقطة ذات الأفصول أ



$$\begin{cases} (T): y = f_g'(x_0)(x - x_0) + f(x_0) \\ x \le x_0 \end{cases}$$



$$\begin{cases} (T): y = f_d'(x_0)(x - x_0) + f(x_0) \\ x \ge x_0 \end{cases}$$



$$\begin{cases} (T): y = f_d'(x_0)(x - x_0) + f(x_0) & x \ge x_0 \\ (T'): y = f_g'(x_0)(x - x_0) + f(x_0) & x \le x_0 \end{cases}$$

<u>خاصىة</u>

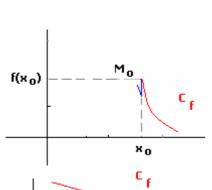
ا أو على اليسار في C_f وان (x_0 وان) المين في أو على اليمين في أو على اليسار في f وان f وان أو إذا كانت f وان أو الموجه $f_d^{'}(x_0)$ عند النقطة ذات الافصول x_0 معامله الموجه x_0 أو أو النقطة ذات الافصول والموجه أو الموجه الموجه والموجه الموجه والموجه الموجه والموجه الموجه والموجه الموجه والموجه والموجه الموجه والموجه وال

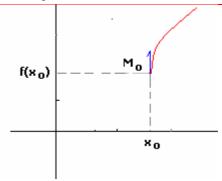
<u>خاصىة</u>

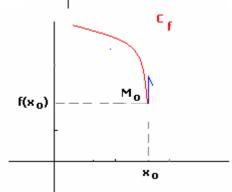
و كان f متصلة في x_0 على اليمين في x_0 أو على اليسار في x_0 و كان

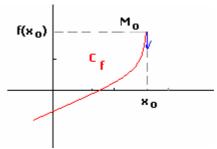
نصف) x_0 فان x_0 فان C_f فان x_0 يقبل مماس عمودي عند عند النقطة ذات الافصول في x_0 فان x_0 فان في المام في

(x_0 مماس عمودي عند النقطة ذات الافصول









$$g(x) = \sqrt{x}$$
 و $f(x) = |x^2 - 1|$ تمرین نعتبر

أدرس قابلية اشتقاق f على يمين ويسار 1 و أول النتائج هندسيا أدرس قابلية اشتقاق g على يمين 0 و أول النتيجة هندسيا

<u>5- إلد الـــة المشتقة</u>

<u>اً- تعاریف</u>

تعریف1

نقول إن f قابلة للاشتقاق على المجال المفتوح I إذا كانت f قابلة للاشتقاق في كل نـقطة من I .

<u>تعرىف2</u>

a نقول إن a قابلة للاشتقاق على المجال aا aا إذا كانت a قابلة للاشتقاق على aا و على يمين aو على يسار a .

[a;b[و على]a;b[و على الاشتقاق على المثل نعرف الاشتقاق على المثل نعرف الاشتقاق على المثل نعرف المثل

<u>تعريف3</u>

لتكن قابلة للاشتقاق على المجال I

. f' بالعدد f'(x) تسمى الدالة المشتقة نرمز لها بالعدد الدالة التي تربط كل عنصر

 $f(x) = x^2$ مثال: نعتبر

ندرس قابلية اشتقاق f و نحدد الدالة المشتقة

 $x_0 \in \mathbb{R}$ لیکن

$$f'(x_0) = 2x_0$$
 و منه قابلة لاشتقاق في $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} x + x_0 = 2x_0$

 $\forall x \in \mathbb{R}$ f'(x) = 2x و \mathbb{R} و أيلة للاشـقاق في \mathbb{R}

ملاحظة:

يكون للمنحنى الممثل لدالة f قابلة للاشتقاق على مجال مفتوح f مماس عند كل نقطة من هذا المنحنى

<u>ب- المشتقة الثانية</u>

التكن f قابلة للاشتقاق مجال f

إذا الدالة f' قابلة للاشتقاق المجال ا فان دالتها المشتقة تسمى الدالة المشتقة الثانية

f" و نرمز لها بالرمز

$$f(x) = x^2$$
 مثال : نعتبر

$$\forall x \in \mathbb{R}$$
 $f'(x) = 2$ فان $\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = 2$ وحيث $\forall x \in \mathbb{R}$ $f'(x) = 2x$ فان $\forall x \in \mathbb{R}$

<u>6- عمليات على الدوال المشتقة </u>

 $n\in \mathbb{N}^*-ig\{1ig\}$ و g دالتين قابلتين للاشتقاق على مجال اg و f دالتين قابلتين للاشتقاق على مجال ا

و f imes g و f imes g و f imes g و f imes g و f imes g

و اذا كانت g لا تنعدم على ا فان $\frac{f}{g}$ و $\frac{1}{g}$ قابلتان للاشتقاق على المجال ا

$$\forall x \in I \quad (f+g)'(x) = f'(x) + g'(x)$$
$$(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$$
$$(\lambda f)' = \lambda f'(x)$$

بحيث
$$g$$
 لا تنعدم على ا g بحيث g ينعدم على ا g بحيث g الا تنعدم على ا

 $n \in \mathbb{N}^* - \{1\}$ و I لتكن f دالة قابلة للاشتقاق على مجال f

(نبین ذلك بالترجع)
$$\forall x \in I$$
 $(f^n)'(x) = n(f(x))^{n-1} \times f'(x)$

7- الدوال المشتقة لبعض الدوال الاعتبادية

 $\forall x \in \mathbb{R}$ f(x) = k : الدالة الثابتة

$$\forall x \in \mathbb{R}$$
 $f'(x) = 0$ و \mathbb{R} و $f(x) = 0$ قابلة للاشتقاق على $f(x) = 0$ و $f'(x) = 0$ و $f'(x) = 0$

 $f: x \to x$ الدالة *

$$orall x \in \mathbb{R}$$
 $f'(x) = 1$ و \mathbb{R} و $f(x) = 1$ و أيلة للاشتقاق على $f(x) = 1$ و $f(x) = 1$

$$f: x \to ax + b$$
 "
 $*$

$$n \in \mathbb{N}^*$$
 $f: x \to x^n$ الدالة

$$\forall x \in \mathbb{R}$$
 $f'(x) = nx^{n-1}(x)' = nx^{n-1}$ و الله الله على f

$$f: x \to \frac{1}{x}$$
 lk-lk *

$$\mathbb{R}^*$$
 إذن f قابلة للاشتقاق على $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{-1}{x \times x_0} = -\frac{1}{x_0^2}$

$$\forall x \in \mathbb{R}^* \qquad f'(x) = -\frac{1}{x^2} \quad \mathbf{g}$$

$$x_0 \in \mathbb{R}_+^*$$
 لتكن $f: x \to \sqrt{x}$ * الدالة

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}} = -\frac{1}{2\sqrt{x_0}}$$

$$\forall x \in \mathbb{R}_+^*$$
 و $f'(x) = \frac{1}{2\sqrt{x}}$ و \mathbb{R}_+^* و أيان f

غير قابلة للاشتقاق في f

$$f: x \to \sin x$$
 الدالة *

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f'(x_0)}{h} = \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h}$$

$$= \lim_{h \to 0} \left(2\cos\left(x_0 + h\right) \right) \times 2 \times \frac{\sin\frac{h}{2}}{\frac{h}{2}} = \cos x_0$$

إذن

$$\forall x \in \mathbb{R}$$
 $\sin'(x) = \cos x$ قابلة للاشتقاق على \mathbb{R} و $x \to \sin x$

 $f: x \to \cos x$ الدالة *

$$\forall x \in \mathbb{R}$$
 $\cos'(x) = -\sin x$ قابلة للاشتقاق على \mathbb{R} و $x \to \cos x$

 $f: x \to \tan x$ الدالة *

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan x = \frac{\sin x}{\cos x}$$

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan' x = \frac{(\sin x)'(\cos x) - (\sin x)(\cos x)'}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{(\cos x)^2} = \frac{1}{\cos^2 x}$$

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\} \quad \tan' x = 1 + \tan^2 x \text{ id}$$

$$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$$
 قابلة للاشتقاق في كل نقطة من $x \longrightarrow \tan x$

$$\forall x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$
 $\tan' x = 1 + \tan^2 x$ و

ىتارىچ

- * الدالة الحدودية قابلة للاشتقاق في $^{\mathbb{R}}$
- * الدالة الجدرية قابلة للاشتقاق في كل نقطة من حيز تعريفها

<u>8- مىرھنة</u>

 $x \to ax + b$ ليكن المجال J صورة المجال I بالدالة التألفية وابلة للاشتقاق على J فان g:x o f(ax+b) إذا كانت f قابلة للاشتقاق على J

$$\forall x \in I \quad g'(x) = af'(ax + b)$$

$$f(x) = \sin\left(5x - \frac{\pi}{3}\right)$$
 مثال: نعتبر

 $\forall x \in \mathbb{R}$ $f'(x) = 5\cos\left(5x - \frac{\pi}{3}\right)$ و ابلة للاشتقاق على f

<u>جدول مشتقات بعض الدوال</u>

$D_{f'}$	$f^{'}(x)$	f(x)
\mathbb{R}	0	а
\mathbb{R}	1	x
\mathbb{R}^*	$-\frac{1}{x^2}$	$\frac{1}{x}$
$\mathbb R$	nx^{n-1}	$n \in \mathbb{N}^* - \{1\} x^n$
\mathbb{R}^*	nx^{n-1}	$n \in \mathbb{Z}^{*-}$ x^n
\mathbb{R}_+^*	$\frac{1}{2\sqrt{x}}$	\sqrt{x}
\mathbb{R}	$-\sin x$	cos x
\mathbb{R}	$\cos x$	sin x
$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$	$1 + \tan^2 x$	tan x
$\mathbb R$	$-a\sin(ax+b)$	$\cos(ax+b)$
\mathbb{R}	$a\cos(ax+b)$	$\sin(ax+b)$

$$f(x) = \frac{x^2 + 3}{x^2 - x} * f(x) = \frac{3x - 1}{2x - 2} * f(x) = \frac{5}{x^2} * f(x) = 5x^4 + 3x^2 + 4 *$$

$$f(x) = \frac{\sin x}{\cos x - \sin x} * f(x) = (\cos x)^5 * f(x) = (x^2 + x)^5 *$$

$$f(x) = x^2 + x|x| *$$

$$\begin{cases} f(x) = x^2 + x & x \le 0 \\ f(x) = x^3 - x^2 & x > 0 \end{cases}$$

$$f(x) = \frac{x^2 - 3x + 6}{x - 1} *$$

$$f(x) = \frac{x^2 - 3x + 6}{x - 1} *$$

y = -3x أ- بين أن منحنى f يقبل مماسين موازيين للمستقيم الذي معادلته ب- أكتب معادلتي هذين المماسيين.