$I \subseteq IN$ ___ خص: المتتاليات

المتتالية الهندسية

$$v_{n+1} = v_n \times q$$

a و الأساس

 $q \in IR^* - \{1\}$

$$v_n = v_p \times q^{n-p}; n \in I$$

الحد الأول للمتتالية u

حدود متعاقبة a,b,c

$$a \times c = b^2$$

$$S_n = V_0 \frac{1 - q^{n+1}}{1 - q} =$$

q=1 المتتالية ثابت من اجل

المتتالبة الحسابية

 $u_{n+1} = u_n + r$

 $r\in IR^*$ هو الأساس

 $u_n = u_p + (n-p)r; n \in I; p \in I$

الحد الأول للمتتالية u_n الوسيط الحسابي

حدود متعاقبة a,b,c

|a + c = 2b|

 $S_n = U_0 + \overline{U_1 + U_2 + \dots + U_n}$

$$\left| \mathcal{S}_n = \frac{\left(n+1\right)}{2} \left(U_p + U_n \right) \right|$$

r=0 المتتالية ثابت من اجل

الاستدلال بالستراجع

عدد طبيعي . معدد طبيعي عدد طبيعي . معدد طبيعي .

المتتالية $\left(u_{n}
ight)$ ثابتة. $u_{n+1}-u_{n}=0$.

 $[0;+\infty[$ على المجال $u_n=f(n)$ على المجال $u_n=f(n)$

تـــــــقارب مــــتتالية:

ا إذا كانت (u_n) محدودة من الأسفل $(u_n>m)$ و متناقصة فإتها متقاربة -

ا إذا كانت (u_n) محدودة من الأعلى $(u_n < M)$ و متزيدة فإنها متقاربة .

مع 1. u_{n+1} مع 1. خوان النسبة $u_n \succ 0$ مع 1.

 $\lim u_n = l$: المتتالية (u_n) متقاربة إذا كانت المتتالية -

- إذا كانت إحداهما متناقصة و الأخرى متزايدة.

 $\lim_{x \to +\infty} u_n = \lim_{x \to +\infty} v_n$

 $\lim (u_n - v_n) = 0$

للبرهان على صحة الخصية $p\left(n
ight)$ من اجل كل عدد طبيعي n اكبر او يساوي .

- $p\left(n_{0}\right)$: نتأكد من صحة الخاصية من اجل أي (1
- فرضية n_0 نقرض إن الخاصية صحيحة من اجل عدد طبيعي كيفي n اكبر من أو يساوي (2 التراجع) ونبرهن صحة الخاصية من اجل n+1 أي p(n+1) صحيحة.

خبرات و تـــقارب

تغيرات متتالية:

- $|u_{n+1} u_n|$: ندرس إشارة الفرق \star
- : $u_{n+1}-u_n\prec 0$ متزيدة تماما. u_n المتتالية $u_{n+1}-u_n\succ 0$ المتتالية (u_n) متناقصة تماما.

- 1) احسب أساس المتتالية.
- . $V_1; V_2; V_3$ (2

$$(u_1 = 2; u_2 = 5; u_3 = 8); (u_3 = 2; u_2 = 5; u_1 = 8); (r = 3); (r = -3)$$

مرین 14:

$$u_2+u_5=34$$
 و $u_0+u_3=18$: متتالية حسابية بحيث (u_n

- 1. اوجد الحد لأول u_0 ولأساس γ لهذه المتتالية.
 - n بدلالة بي بدلالة الحد العام بدلالة 2.
- n بدلالة $s_n = u_0 + u_1 + \dots + u_n$ بدلالة $s_n = u_0 + u_1 + \dots + u_n$

 $s_n = 78$ اوجد العدد الطبيعي n بحيث

$$u_0 = 3; r = 4; u_n = 3 + 4n; n = 4; s_n = (n+1)(2n+3)$$

تمرين 15:

$$\begin{cases} u_0=2 \\ u_{n+1}=rac{2u_n-1}{u_n} \end{cases}$$
 : بنعتبر المثنائية (u_n) المعرفة على (u_n)

$$v_n = \frac{1}{u_n - 1}$$
و المتتالية (v_n) المعرفة

- بين أن (v_n) المتتالية حسابية (1
 - n عبر عن v_n ثم عبر 2

$$v_0 = 1, r = 1; v_n = 1 + n; u_n = (n+2)/(n+1)$$

1-الصنتالية الصسابية

_مرین <u>11:</u>

 $[u_1^{}]$ متتالية حسابية حدها لأول $[u_n^{}]$

- $u_3 + u_1 = 12$ علما أن u_2 احسب حدها الثاني u_3 علما أن
- $u_3 + u_4 + u_5 = 30$ احسب حدها الرابع u_4 علما ان (2
 - عين الأساس ٢ لهذه المتتالية و حدها الأول.
 - $u_n=\overline{3}2$ اکتب u_n بدلالة n ثم عين n علما أن (4
 - $S_n = u_1 + u_2 + \dots + u_n$: (5)

$$u_2 = 6$$
; $u_4 = 10$; $r = 2$; $u_1 = 4$; $u_n = 2 + 2n$; $n = 15$; $s_n = n(n+3)$

مرین 12: لتکن $v_1; v_2; v_3$ حدود متعاقبة لمتنالیة حسابیله حیث $v_2; v_3; v_3$

$$v_1 + v_2 + v_3 + v_4 = -18$$
 $v_1 = 3$

- 1) احسب أساس المتتالية.
- 2) احسب الحد العاشر. 2)
- 3) اكتب عبارة الحد العام
- 4) احسب المجموع بدلالة .

$$S_n = V_1 + V_2 + V_3 + \dots + V_n$$

$$r = -5; v_{10} = -42; v_n = 8 - 5n; s_n = \frac{n}{2}(11 - 5n)$$

مرین 13: لتکن $v_1; v_2; v_3$ حدود متعاقبة لمتتالیة حسابیة حیث

$$v_{_{_{1}}}^{2} + v_{_{_{2}}}^{2} + v_{_{_{3}}}^{2} = 93$$
 و $v_{_{1}} + v_{_{2}} + v_{_{3}} = 15$