

منتديات طموحنا التعليمية طريقك نحو التفوق

www.tomohna.com

روابط سريعة للأقسام التعليمية

التحضير للبكالوريا	التعليم الثانوي	التعليم المتوسط
قسم التحضير العام لشهادة البكالوريا	السنة الأولى ثانوي	قسم السنة الأولى متوسط
قسم الشعب العلمية للسنة الثالثة ثانوي	السنة الثانية ثانوي	قسم السنة الثانية متوسط
 الرياضيات للسنة الثالثة ثانوي شعب علمية 		
 الفيزياء و الكيمياء للسنة الثالثة ثانوي شعب علمية 	www.tomohna ریات طموحنا	usom III
 العلوم الطبيعية للسنة الثالثة ثانوي علوم تجريبية و الرياضيات 		ليس للإبداع حدود
 التكنولوجيا للسنة الثالثة ثانوى تقنى رياضى 		
قسم الشعب الأدبية للسنة الثالثة <u>ثانوي</u>	السنة الثالثة ثانوي	قسم السنة الثالثة متوسط
 اللغة العربية للسنة الثالثة ثانوى اداب الفلسفة للسنة الثالثة ثانوي 		
آداب		

التاريخ والجغرافيا للسنة الثالثة ثانوي آداب اللغة الفرنسية للسنة الثالثة ثانوي آداب ثانوي آداب ثانوي آداب ثانوي آداب واللغة الاسبانية و الألمانية للسنة الثالثة ثانوي آداب ولغات أجنبية العلوم الإسلامية للسنة الثالثة	ducqil	ehina.com وتترياد المس للإبداع حدود
شعبة التسيير والاقتصاد	المواد العلمية والتقنية	قسم السنة الرابعة متوسط
	المواد الأدبية واللغات	
التسيير المالي و المحاسبي <u>SCF</u>		ه منتریات طب
		الانداع حدود
	قسم البحوث والطلبات الخاصة بتلاميذ التعليم الثانوي	التحضير لامتحانات شهادة التعليم المتوسط 2013
		قسم البحوث و الطلبات الخاصة
		بتلاميذ التعليم المتوسط

:

cherifalix@yahoo.fr

2006

• http://arabmaths.ift.fr

 $u_n = v_n + 3$

 $\lim_{n \to +\infty} u_n = 3$

التمرين الثاني:

 $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$

(E)

C(0;-2;1) **e** B(1;-1;3) **e** A(2;0;2):

: $\overrightarrow{AB} \wedge \overrightarrow{AC}$ (1

 $\overrightarrow{AC}(-2;-2;-1)$ $\overrightarrow{AB}(-1;-1;1)$:

 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} -1 & 1 \\ -2 & -1 \end{vmatrix} \dot{i} - \begin{vmatrix} -1 & -1 \\ -2 & -1 \end{vmatrix} \cdot \dot{j} + \begin{vmatrix} -1 & -1 \\ -2 & -2 \end{vmatrix} \cdot \vec{k} :$

 $\overrightarrow{AB} \wedge \overrightarrow{AC} = 3\overrightarrow{i} - 3\overrightarrow{j}$:

: (ABC) (2

 \overrightarrow{ABC} $\overrightarrow{AB} \wedge \overrightarrow{AC}$

(ABC): 3x - 3y + d = 0 : (ABC): 3x - 3y + d = 0

. d = -6: $A \in (ABC)$: بما أن

(ABC): 3x - 3y - 6 = 0:

(ABC) A (S)

 $B \qquad \qquad (\zeta)$

 $\mathbf{r}(S)$

 $d^2 + r^2 = R^2 \qquad :$

. r = 2 g $d = AB = \sqrt{(-1)^2 + (-1)^2 + 1^2} = \sqrt{3}$:

 $R = \sqrt{d^2 - r^2} = \sqrt{3 + 4} = \sqrt{7}$

:

 $\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{1}{4}u_n + \frac{9}{4} \end{cases} \quad (u_n)$

 $v_n = u_n + k \quad : \qquad \qquad \left(v_n\right)$

(n k)

 $v_n \qquad u_n \qquad v_{n+1} \qquad (1$

 $v_{n+1} = u_{n+1} + k = \frac{1}{4}.u_n + \frac{9}{4} + k$ $= \frac{1}{4}(v_n - k) + \frac{9}{4} + k$: ندينا

 $v_{n+1} = \frac{1}{4}.v_n + \frac{3}{4}.k + \frac{9}{4}$

 $(v_{n}) k (2$

 $\frac{3}{4}.k + \frac{9}{4} = 0$:

k=-3

 $\frac{1}{4}$ $\left(v_{n}\right)$

 $v_0 = u_0 - 3 = 1$

 $. (v_n) (u_n) (3)$

. $v_{\scriptscriptstyle 0}=1$ بما أن $\left(v_{\scriptscriptstyle n}\right)$ بما أن

 $v_n = \left(\frac{1}{4}\right)^n \qquad : \qquad v_n = v_0 \cdot \left(\frac{1}{4}\right)^{n-0} :$ $\lim_{n \to +\infty} v_n = 0 \qquad : \qquad 0 \cdot \left(\frac{1}{4}\right)^{n-1} :$

 $u_n = v_n - k$: $v_n = u_n + k$:

:

2006

cherifalix@yahoo.fr

2 http://arabmaths.ift.fr2

: X

$(X=x_{i})$	2	3	10
$P(X=x_{i})$	$\frac{2}{5}$	$\frac{1}{2}$	$\frac{1}{10}$

: E(X)

$$E(X) = \sum_{i=1}^{3} x_i . P(X = x_i)$$
$$= 2.\frac{2}{5} + 3.\frac{1}{2} + 10.\frac{1}{10} = \frac{33}{10}$$

:V(X)

$$V(X) = \sum_{i=1}^{3} p_i \cdot (x_i - E(x))^2$$
$$= \frac{2}{5} \cdot \left(2 - \frac{33}{10}\right)^2 + \frac{1}{2} \cdot \left(3 - \frac{33}{10}\right)^2 + \frac{1}{10} \cdot \left(10 - \frac{33}{10}\right)^2$$

التمرين الرابع:

(E):
$$z^3 - 8z^2 + 24z - 32 = 0$$
:

$$z_0 = 4$$
 (1)

$$4^3 - 8 \times 4^2 + 24 \times 4 - 32 = 0$$

$$(E)$$
 c و b و a $*(E): (z-4)(az^2+bz+c)=0$
 $(z-4)(a.z^2+b.z+c)=a.z^3+b.z^2+c.z$
 $-4.a.z^2-4.b.z-4c$
 $=a.z^3+(b-4a).z^2+(c-4b).z-4c$
 $! يعني *(E)$
 $a.z^3+(b-4a).z^2+(c-4b).z-4c$

 $=z^3-8.z^2+24.z-32$

$$(x-2)^2 + y^2 + (z-2)^2 = 7$$
 :

$$x^2 + y^2 + z^2 - 4x - 4z + 1 = 0$$
 :

التمرين الثالث:

1

$$P(J) = \frac{3}{10}$$
 ": J

$$P(B) = \frac{2}{10} = \frac{1}{5}$$
 ": B

$$P(R) = \frac{1}{10}$$
 ": F

$$P(V) = \frac{4}{10} = \frac{2}{5}$$
 ": V

X

.

$$X(\Omega) = \{2,3,10\}$$
:

$$P(X=2) = P(V) = \frac{2}{5}$$
 :

$$P(X = 3) = P(J \cup B) = P(J) + P(B) - P(J \cap B)$$

$$=\frac{3}{10}+\frac{1}{5}=\frac{1}{2}$$

$$P(X=10) = P(R) = \frac{1}{10}$$

cherifalix@yahoo.fr

2006

3 http://arabmaths.ift.fr**3**

:

- (1

:

2

$$f(x) = \frac{x+2}{x+1} + \ln|x+1|$$

$$D_{f} = IR - \{-1\}$$
 : f

$$f(x) = \frac{x+2+(x+1)\ln|x+1|}{x+1}$$

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{x + 2 + (x+1)\ln|x+1|}{x+1}$$
:

$$= \lim_{x \to -1^{+}} \frac{x + 2 + (x + 1)\ln(x + 1)}{x + 1} (x + 1)0$$

$$t = x + 1$$
: $\lim_{t \to 0^+} t \cdot \ln(t) = 0$:

$$t \to 0^+ \Leftrightarrow x \to -1^+$$
 : لينا

$$\lim_{x \to -1^{+}} f(x) = \lim_{t \to 0^{+}} \frac{t+1+t \ln(t)}{t} = +\infty :$$

$$\lim_{x\to -\infty} f(x) = +\infty \quad , \quad \lim_{x\to +\infty} f(x) = +\infty \quad :$$

$$\lim_{x\to -1^-} f(x) = -\infty$$

$$(\forall x \in D_f)$$
: $f'(x) = \frac{x}{(x+1)^2}$:

:

х	- o -	1 () + 20
f '(x)	_		+
f(x)	+ 8,	+ 8	+ o

$$a = 1$$

$$b - 4a = -8$$

$$c - 4b = 24$$

$$-4c = -32$$

$$\begin{cases} a = 1 \\ b = -8 + 4 = -4 \\ c = 24 + 4b = 24 - 16 = 8 \end{cases}$$

$$c = \frac{32}{4} = 8$$

$$\Leftrightarrow \begin{cases} a = 1 \\ b = -4 \\ c = 8 \end{cases}$$

$$(E):(z-4)(z^2-4.z+8)=0$$
 : ultillar

$$Z_2 \ni Z_1$$
 . (E) - 2

.
$$Im(z_2) \le 0$$
 $gamma Im(z_1) \ge 0$:

$$(E): (z-4)(z^2-4.z+8)=0$$
 : (E)

$$(z-4)=0$$
 $(z^2-4.z+8)=0$:

$$\Delta' = 4 - 8 = -4 = (2i)^2$$
 : $(z^2 - 4.z + 8) = 0$

$$z_2 = 2 - 2.i$$
 $e^{-2} = 2 + 2.i$:

$$S = \{4; 2+2i; 2-2i\}$$
:

$$z_2 = 2\sqrt{2}.e^{-i\frac{\pi}{4}}$$
 o $z_1 = 2\sqrt{2}.e^{i\frac{\pi}{4}}$: z_2 o z_1

$$M_2$$
; M_1 ; M_0 -3

$$(\zeta) \qquad \qquad z_2 \; ; \; z_1 \; ; \; z_0$$

$$R=2 \qquad \omega=2 \qquad \Omega$$

$$|z_1 - z_{\Omega}| = |2i| = 2$$
 $|z_0 - z_{\Omega}| = |4 - 2| = 2$:

$$|z_2 - z_0| = |-2i| = 2$$

$$\Omega M_0 = \Omega M_1 = \Omega M_2$$
 :

$$M_2; M_1; M_0$$

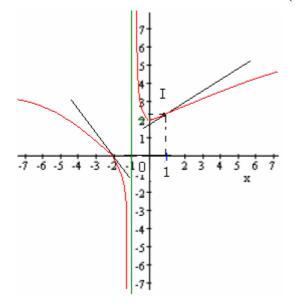
$$R=2 \qquad \omega=2$$

$$\Omega$$

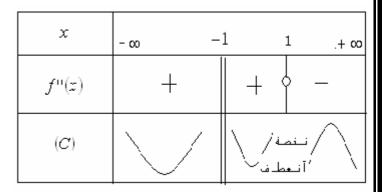
cherifalix@yahoo.fr

2006

4 http://arabmaths.ift.fr4


$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x+2}{x(x+1)} + \frac{x+1}{x} \cdot \frac{\ln(|x+1|)}{x+1}$$
$$= 0$$

$$\pm \infty$$
 (C)


: (C) -

ملاحظة: قبل إنشاء المنحنى يجب آتباع الخطوات التالية:

- 1) قراءة جيدة لجدول التغيرات و تقعر المنحنى و أخذ فكرة عن الشكل الذي سيأخذه المنحنى .
 - 2) إنشاء المقاربات إنطلاقا من النتائج المحصل عليها .
 - 3) إنشاء النقط التي توجد بها قيم دنوية أو قصوية للمنحنى
 - و نقطة الإنعطاف. (في حالة وجودها) $\left(C
 ight)$
 - 4) إنشاء المستقيمات المماسات التي طلب تحديد معادلتها .
 - و المقاربات و (C) مع المقاربات و المماسات إما عن طريق جدول التغيرات أو بواسطة تحديد الإشارة (C)) الإنشاء :

$$(\forall x \in D_f): f''(x) = \frac{1-x}{(x+1)^2}$$
 . $I(1; f(1)) (C):$

: -2

$$\Rightarrow y = (x+2)f'_{(-2)} + f_{(-2)}$$

$$y = -2x - 4$$

$$: I(1; f(1))$$

$$\Rightarrow y = (x-1)f'(1) + f(1)$$
$$y = \frac{1}{4}x + \frac{5}{4} + \ln(2)$$

, $\lim_{x \to -1^+} f(x) = +\infty$:

$$(C) \qquad \lim_{x \to -1^{-}} f(x) = -\infty$$

x = -1:

. - 1

2006

:

cherifalix@yahoo.fr

• http://arabmaths.ift.fr

ا المماس عند النقطة يخترق المنحنى (C) لأن النقطة C عطاف .

: من خلال جدول التغيرات نستنتج عند f(x) من خلال جدول التغيرات نستنتج

х	- ω	- 2 - 1	[+ ∞
$f(\mathbf{x})$	+	- O		

<u>:</u>

نعتبر الدالة $\,g\,$ المعرفة بمايلي :

$$\begin{cases} g(x) = e^{(x+2)\ln|x+1|}; & x \neq -1 \\ g(-1) = 0 \end{cases}$$

-1 أ ـ لنبين أن لكل عدد حقيقي x مختلف عن 1

$$g(x) = |x+1|e^{(x+1)\ln|x+1|}$$

-1 كك عدد حقيقي x مختلف عن

$$g(x) = e^{(x+2)\ln|x+1|}$$
 : لينا

$$g(x) = e^{\left(x+1+1\right)\ln\left|x+1\right|}$$

$$=e^{\left(x+1\right)\ln\left|x+1\right|+\ln\left|x+1\right|}$$
 هذا یکافئ:

$$= e^{ln\left|x+1\right|} \times e^{\left(x+1\right)ln\left|x+1\right|}$$

-1 و منه لكل عدد حقيقي x مختلف عن

(
$$e^{\ln|x+1|} = |x+1|$$
) $g(x) = |x+1|e^{(x+1)\ln|x+1|}$: لاينا

 \cdot -1 عند q عند الدالة q

$$\begin{split} \lim_{x \to -1^+} g(x) &= \lim_{x \to -1^+} (x+1) e^{(x+1) \cdot \ln(x+1)} \\ &= 0 = g(-1) \end{split}$$

 $\lim_{x \to \Gamma} g(x) = \lim_{x \to \Gamma} (x+1) e^{-(-(x+1)) \cdot \ln(-(x+1))}$ = 0 = g(-1)

 $oldsymbol{:} -1$ عند $oldsymbol{g}$

* لدينا :

$$\lim_{x \to -1^+} \frac{g(x) - g(-1)}{x+1} = \lim_{x \to -1^+} \frac{(x+1)e^{(x+1).\ln(x+1)}}{x+1} = 1$$

$$\lim_{x \to -1^{-}} \frac{g(x) - g(-1)}{x+1} = \lim_{x \to -1^{-}} \frac{-(x+1)e^{-(-(x+1)) \cdot \ln - (x+1)}}{x+1} = -1$$

-1 إذن الدالة $oldsymbol{arphi}$ غير قابلة للإشتقاق عند

.
$$IR-\{-1\}$$
 الدالة g قابلة للإشتقاق على g

و لدينا :
$$g'(x) = f(x)e^{(x+2).\ln|x+1|}$$
 : و لدينا : $f(x)$ هي إشارة $g(x)$ هي إشارة

و بالتالي نستنتج جدول تغيرات الدالة ع:

х	-∞ -2 -1	+ ∞
g'(x)	+ -	+
g(x)	0 7 1	+ 00

3) أ - الفروع اللانهائية:

$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{|x+1|}{x} \cdot e^{(x+1) \cdot \ln|x+1|}$$

$$= \lim_{x \to +\infty} \frac{(x+1)}{x} \cdot e^{(x+1) \cdot \ln(x+1)} = +\infty$$

و هذا يعني أن منحنى الدالة g يقبل بجوار $\infty +$ محور الأراتيب فرعا شلجميا .

2006 6 http://arabmaths.ift.fr cherifalix@yahoo.fr ب - منحنى الدالة g $x \in IR$: $m^{\frac{1}{x+2}} = |x+1|$: نعتبر المعادلة (4 حيث m بارامتر حقيقي . $\left(m^{\frac{1}{x+2}}\right)^{x+2} = \left|x+1\right|^{x+2}$: المعادلة تكافئ $m=e^{({\scriptscriptstyle (x+2).\ln |x+1|}}$: تكافئ أيضا $x \in IR$ g(x) = m : تكافئ من خلال التمثيل المبياني للدالة g نستنتج أن: حلول المعادلة هي أ فاصيل نقط تقاطع المنحنى (Γ) و المستقيم الذي y=m و منه y=mي اذا كان و $m \ \langle \ 0 \]$ اذا كان $m \ \langle \ 0 \]$ إذا كان: m=0 : فإن المعادلة تقبل حل وحيد _ _ 2 هو العدد 1 - . ا المعادلة تقبل ثلاث حلول $0 \ \langle \ m \ \langle \ 1 \]$ وأن المعادلة تقبل ثلاث حلول 2 فإن المعادلة تقبل حلين هما m=1 إذا كان M=1و 0 . ي المعادلة تقبل حل وحيد . $m \
angle \ 1$ إذا كان -5